enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function can be constructed as the double pointwise limit of a sequence of continuous functions, as follows: , = ((⁡ (!))) for integer j and k. This shows that the Dirichlet function is a Baire class 2 function.

  3. Dirichlet L-function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_L-function

    The Dirichlet L-function L(s, χ) = 1 − 3 −s + 5 −s − 7 −s + ⋅⋅⋅ (sometimes given the special name Dirichlet beta function), with trivial zeros at the negative odd integers. Let χ be a primitive character modulo q, with q > 1. There are no zeros of L(s, χ) with Re(s) > 1. For Re(s) < 0, there are zeros at certain negative ...

  4. Selberg class - Wikipedia

    en.wikipedia.org/wiki/Selberg_class

    All known examples are automorphic L-functions, and the reciprocals of F p (s) are polynomials in p −s of bounded degree. [4] The best results on the structure of the Selberg class are due to Kaczorowski and Perelli, who show that the Dirichlet L-functions (including the Riemann zeta-function) are the only examples with degree less than 2. [5]

  5. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    One example of such a function is the indicator function of the rational numbers, also known as the Dirichlet function. This function is denoted as 1 Q {\displaystyle \mathbf {1} _{\mathbb {Q} }} and has domain and codomain both equal to the real numbers .

  6. Dirichlet convolution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_convolution

    The set of arithmetic functions forms a commutative ring, the Dirichlet ring, under pointwise addition, where f + g is defined by (f + g)(n) = f(n) + g(n), and Dirichlet convolution. The multiplicative identity is the unit function ε defined by ε ( n ) = 1 if n = 1 and ε ( n ) = 0 if n > 1 .

  7. Dirichlet hyperbola method - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_hyperbola_method

    An example of the Dirichlet hyperbola method with =,, and . In number theory, the Dirichlet hyperbola method is a technique to evaluate the sum = = (),where f is a multiplicative function.

  8. Dirichlet series - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_series

    The most famous example of a Dirichlet series is = =,whose analytic continuation to (apart from a simple pole at =) is the Riemann zeta function.. Provided that f is real-valued at all natural numbers n, the respective real and imaginary parts of the Dirichlet series F have known formulas where we write +:

  9. Dirichlet beta function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_beta_function

    For every odd positive integer +, the following equation holds: [3] (+) = ()!() +where is the n-th Euler Number.This yields: =,() =,() =,() =For the values of the Dirichlet beta function at even positive integers no elementary closed form is known, and no method has yet been found for determining the arithmetic nature of even beta values (similarly to the Riemann zeta function at odd integers ...