Search results
Results from the WOW.Com Content Network
Lithium imide is an inorganic compound with the chemical formula Li 2 N H. This white solid can be formed by a reaction between lithium amide and lithium hydride. [1] LiNH 2 + LiH → Li 2 NH + H 2. The product is light-sensitive and can undergo disproportionation to lithium amide and characteristically red lithium nitride. 2 Li 2 NH → LiNH 2 ...
A chlorate candle, or an oxygen candle, is a cylindrical chemical oxygen generator that contains a mix of sodium chlorate and iron powder, which when ignited smolders at about 600 °C (1,100 °F), producing sodium chloride, iron oxide, and oxygen at a fixed rate of about 6.5 man-hours per kilogram of the mixture. The mixture has an indefinite ...
Lithium amide or lithium azanide is an inorganic compound with the chemical formula LiNH 2. It is a white solid with a tetragonal crystal structure. [1] Lithium amide can be made by treating lithium metal with liquid ammonia: [2] 2 Li + 2 NH 3 → 2 LiNH 2 + H 2. Lithium amide decomposes into ammonia and lithium imide upon heating. [3]
The highest-specific-impulse chemistry ever test-fired in a rocket engine was lithium and fluorine, with hydrogen added to improve the exhaust thermodynamics (all propellants had to be kept in their own tanks, making this a tripropellant). The combination delivered 542 s specific impulse in vacuum, equivalent to an exhaust velocity of 5320 m/s.
The inorganic imide is an inorganic chemical compound containing an anion with the chemical formula HN 2−, in which nitrogen atom is covalently bonded to one hydrogen atom (as in lithium imide Li 2 NH and calcium imide CaNH). The other name of that anion is monohydrogen nitride.
In organic chemistry, an imide is a functional group consisting of two acyl groups bound to nitrogen. [1] The compounds are structurally related to acid anhydrides , although imides are more resistant to hydrolysis.
Rather than combustion, organisms rely on elaborate sequences of electron-transfer reactions, often coupled to proton transfer. The direct reaction of O 2 with fuel is precluded by the oxygen reduction reaction, which produces water and adenosine triphosphate. Cytochrome c oxidase affects the oxygen reduction reaction by binding O 2 in a heme ...
The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow. [1] Pairing lithium and ambient oxygen can theoretically lead to electrochemical cells with the highest possible specific energy.