Search results
Results from the WOW.Com Content Network
This is a list of volume formulas of basic shapes: [4]: 405–406 Cone – , where is the base's radius; Cube – , where is the side's length;; Cuboid – , where , , and are the sides' length;
3D model of a (uniform) heptagonal prism. In geometry , the heptagonal prism is a prism with heptagonal base. This polyhedron has 9 faces (2 bases and 7 sides), 21 edges, and 14 vertices.
In speaking about these processes, the measure (length or area) of a figure's base is often referred to as its "base." By this usage, the area of a parallelogram or the volume of a prism or cylinder can be calculated by multiplying its "base" by its height; likewise, the areas of triangles and the volumes of cones and pyramids are fractions of ...
The volume of a prism is the product of the area of the base by the height, i.e. the distance between the two base faces (in the case of a non-right prism, note that this means the perpendicular distance). The volume is therefore: =, where B is the base area and h is the height.
For a given volume, the right circular cylinder with the smallest surface area has h = 2r. Equivalently, for a given surface area, the right circular cylinder with the largest volume has h = 2r, that is, the cylinder fits snugly in a cube of side length = altitude ( = diameter of base circle). [8]
The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere. The counterparts of a circle in other dimensions can never be packed with complete efficiency in dimensions larger than one (in a one-dimensional universe, the circle analogue is just two points). That is ...
For a unit (i.e.: with side length 1) rhombohedron, [4] with rhombic acute angle , with one vertex at the origin (0, 0, 0), and with one edge lying along the x-axis, the three generating vectors are
The volume, as for all prisms, is the product of the area of the pentagonal base times the height or distance along any edge perpendicular to the base. For a uniform pentagonal prism with edges h the formula is (+)