Search results
Results from the WOW.Com Content Network
Logo of Eurocode 7. In the Eurocode series of European standards (EN) related to construction, Eurocode 7: Geotechnical design (abbreviated EN 1997 or, informally, EC 7) describes how to design geotechnical structures, using the limit state design philosophy. It is published in two parts; "General rules" and "Ground investigation and testing".
EN 1990: (Eurocode 0) Basis of structural design; EN 1991: (Eurocode 1) Actions on structures; EN 1992: (Eurocode 2) Design of concrete structures; EN 1993: (Eurocode 3) Design of steel structures; EN 1994: (Eurocode 4) Design of composite steel and concrete structures; EN 1995: (Eurocode 5) Design of timber structures; EN 1996: (Eurocode 6 ...
A grade beam or grade beam footing is a component of a building's foundation. It consists of a reinforced concrete beam that transmits the load from a bearing wall into spaced foundations such as pile caps or caissons. [1] It is used in conditions where the surface soil's load-bearing capacity is less than the anticipated design loads.
Schematic cross section of a pressurized caisson. In geotechnical engineering, a caisson (/ ˈ k eɪ s ən,-s ɒ n /; borrowed from French caisson 'box', from Italian cassone 'large box', an augmentative of cassa) is a watertight retaining structure [1] used, for example, to work on the foundations of a bridge pier, for the construction of a concrete dam, [2] or for the repair of ships.
All of the EN Eurocodes relating to materials have a Part 1-1 which covers the design of buildings and other civil engineering structures and a Part 1-2 for fire design. The codes for concrete, steel, composite steel and concrete, and timber structures and earthquake resistance have a Part 2 covering design of bridges.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Reinforced concrete structures are normally designed according to rules and regulations or recommendation of a code such as ACI-318, CEB, Eurocode 2 or the like. WSD, USD or LRFD methods are used in design of RC structural members. Analysis and design of RC members can be carried out by using linear or non-linear approaches.
An example of lateral earth pressure overturning a retaining wall. The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and ...