Search results
Results from the WOW.Com Content Network
Sudoku solving algorithms. A typical Sudoku puzzle. A standard Sudoku contains 81 cells, in a 9×9 grid, and has 9 boxes, each box being the intersection of the first, middle, or last 3 rows, and the first, middle, or last 3 columns. Each cell may contain a number from one to nine, and each number can only occur once in each row, column, and box.
Mathematical context. The general problem of solving Sudoku puzzles on n2 × n2 grids of n × n blocks is known to be NP-complete. [8] A puzzle can be expressed as a graph coloring problem. [9] The aim is to construct a 9-coloring of a particular graph, given a partial 9-coloring. The Sudoku graph has 81 vertices, one vertex for each cell.
A Sudoku with 18 clues and two-way diagonal symmetry. This section refers to classic Sudoku, disregarding jigsaw, hyper, and other variants. A completed Sudoku grid is a special type of Latin square with the additional property of no repeated values in any of the nine blocks (or boxes of 3×3 cells).
Ariadne's thread, named for the legend of Ariadne, is solving a problem which has multiple apparent ways to proceed—such as a physical maze, a logic puzzle, or an ethical dilemma —through an exhaustive application of logic to all available routes. It is the particular method used that is able to follow completely through to trace steps or ...
Taking Sudoku Seriously. Taking Sudoku Seriously: The math behind the world's most popular pencil puzzle is a book on the mathematics of Sudoku. It was written by Jason Rosenhouse and Laura Taalman, and published in 2011 by the Oxford University Press. The Basic Library List Committee of the Mathematical Association of America has suggested its ...
Backtracking is an important tool for solving constraint satisfaction problems, [2] such as crosswords, verbal arithmetic, Sudoku, and many other puzzles. It is often the most convenient technique for parsing , [ 3 ] for the knapsack problem and other combinatorial optimization problems.
A Sudoku variant with prime N (7×7) and solution. (with Japanese symbols). Overlapping grids. The classic 9×9 Sudoku format can be generalized to an N×N row-column grid partitioned into N regions, where each of the N rows, columns and regions have N cells and each of the N digits occur once in each row, column or region.
One Sudoku contains therewith about the same information as 72 coin tosses or a sequence of 72 bits. A sequence of 81 random symbols has bits of information. One Sudoku code can be seen as 72.5 bits of information and 184.3 bits redundancy. Theoretically a string of 72 bits can be mapped to one sudoku that is sent over the channel as a string ...