Search results
Results from the WOW.Com Content Network
In binary arithmetic, division by two can be performed by a bit shift operation that shifts the number one place to the right. This is a form of strength reduction optimization. For example, 1101001 in binary (the decimal number 105), shifted one place to the right, is 110100 (the decimal number 52): the lowest order bit, a 1, is removed.
To convert from a base-10 integer to its base-2 (binary) equivalent, the number is divided by two. The remainder is the least-significant bit. The quotient is again divided by two; its remainder becomes the next least significant bit. This process repeats until a quotient of one is reached.
A left arithmetic shift by n is equivalent to multiplying by 2 n (provided the value does not overflow), while a right arithmetic shift by n of a two's complement value is equivalent to taking the floor of division by 2 n. If the binary number is treated as ones' complement, then the same right-shift operation results in division by 2 n and ...
Shifting left by n bits on a signed or unsigned binary number has the effect of multiplying it by 2 n. Shifting right by n bits on a two's complement signed binary number has the effect of dividing it by 2 n, but it always rounds down (towards negative infinity). This is different from the way rounding is usually done in signed integer division ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
A binary operation is a rule for combining the arguments and to produce. In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation on a set is a binary function ...
Logical shifts can be useful as efficient ways to perform multiplication or division of unsigned integers by powers of two. Shifting left by n bits on a signed or unsigned binary number has the effect of multiplying it by 2 n. Shifting right by n bits on an unsigned binary number has the effect of dividing it by 2 n (rounding towards 0).
The binary GCD algorithm is a variant of Euclid's algorithm that is specially adapted to the binary representation of the numbers, which is used in most computers. The binary GCD algorithm differs from Euclid's algorithm essentially by dividing by two every even number that is encountered during the computation.