Search results
Results from the WOW.Com Content Network
In computer science, modular arithmetic is often applied in bitwise operations and other operations involving fixed-width, cyclic data structures. The modulo operation, as implemented in many programming languages and calculators, is an application of modular arithmetic that is often used in this context. The logical operator XOR sums 2 bits ...
Modulo operations might be implemented such that a division with a remainder is calculated each time. For special cases, on some hardware, faster alternatives exist. For example, the modulo of powers of 2 can alternatively be expressed as a bitwise AND operation (assuming x is a positive integer, or using a non-truncating definition):
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.
This quotient group is isomorphic with the set {,} with addition modulo 2; informally, it is sometimes said that / equals the set {,} with addition modulo 2. Example further explained... Let γ ( m ) {\displaystyle \gamma (m)} be the remainders of m ∈ Z {\displaystyle m\in \mathbb {Z} } when dividing by 2 {\displaystyle 2} .
Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.
GF(2) is the unique field with two elements with its additive and multiplicative identities respectively denoted 0 and 1. Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below: +
The set of integers modulo 2 has just two elements; the addition operation it inherits is known in Boolean logic as the "exclusive or" function. A similar "wrap around" operation arises in geometry, where the sum of two angle measures is often taken to be their sum as real numbers modulo 2π.