Search results
Results from the WOW.Com Content Network
The Sackur–Tetrode equation is an expression for the entropy of a monatomic ideal gas. [ 1 ] It is named for Hugo Martin Tetrode [ 2 ] (1895–1931) and Otto Sackur [ 3 ] (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics and entropy equations, at about the same time in 1912.
Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:
For the expansion (or compression) of an ideal gas from an initial volume and pressure to a final volume and pressure at any constant temperature, the change in entropy is given by: = = Here is the amount of gas (in moles) and is the ideal gas constant. These equations also apply for expansion into a finite vacuum or a throttling ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension General heat/thermal capacity C = / J⋅K −1: ML 2 T −2 Θ −1: Heat capacity (isobaric)
A major use of the integrated equation is to estimate a new equilibrium constant at a new absolute temperature assuming a constant standard enthalpy change over the temperature range. To obtain the integrated equation, it is convenient to first rewrite the Van 't Hoff equation as [ 2 ]
In the case of an ideal gas, the heat capacity is constant and the ideal gas law PV = nRT gives that α V V = V/T = nR/p, with n the number of moles and R the molar ideal-gas constant. So, the molar entropy of an ideal gas is given by (,) = (,) + . In this expression C P now is the molar heat capacity. The entropy of inhomogeneous ...
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
The properties of molar internal energy and entropy —defined by the first and second laws of thermodynamics, hence all thermodynamic properties of a simple compressible substance—can be specified, up to a constant of integration, by two measurable functions: a mechanical equation of state = (,), and a constant volume specific heat (,).