Search results
Results from the WOW.Com Content Network
For convenience, consider contact with the spring occurs at t = 0, then the integral of the product of the distance x and the x-velocity, xv x dt, over time t is 1 / 2 x 2. The work is the product of the distance times the spring force, which is also dependent on distance; hence the x 2 result.
The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies enormously depending on the size and geometry of the falling object—for example, the equations are hopelessly wrong for a feather, which ...
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
[12] [13]: 150 The physics concept of force makes quantitative the everyday idea of a push or a pull. Forces in Newtonian mechanics are often due to strings and ropes, friction, muscle effort, gravity, and so forth. Like displacement, velocity, and acceleration, force is a vector quantity.
The velocity is the time derivative of the displacement: = = ^ + ^. Because the radius of the circle is constant, the radial component of the velocity is zero. The unit vector u ^ R ( t ) {\displaystyle {\hat {\mathbf {u} }}_{R}(t)} has a time-invariant magnitude of unity, so as time varies its tip always lies on a circle of unit radius, with ...
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
For an object in uniform circular motion, the net force acting on the object equals: [46] = ^, where is the mass of the object, is the velocity of the object and is the distance to the center of the circular path and ^ is the unit vector pointing in the radial direction outwards from the center. This means that the net force felt by the object ...