Search results
Results from the WOW.Com Content Network
The tonne (/ t ʌ n / ⓘ or / t ɒ n /; symbol: t) is a unit of mass equal to 1,000 kilograms.It is a non-SI unit accepted for use with SI.It is also referred to as a metric ton in the United States to distinguish it from the non-metric units of the short ton (United States customary units) and the long ton (British imperial units).
Harbour ton, used in South Africa in the 20th century, was equivalent to (2,000 pounds (907 kg)) or 1 short ton. Assay ton (abbreviation 'AT') is not a unit of measurement but a standard quantity used in assaying ores of precious metals. A short assay ton is approximately 29.17 g (1.029 oz) and a long assay ton is approximately 32.67 g (1.152 oz).
The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes. For example, a gigagram ( Gg ) or 10 9 g is 10 3 tonnes, commonly called a kilotonne .
kg mass "The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J s, which is equal to kg m 2 s −1, where the metre and the second are defined in terms of c and ∆ν Cs." [1]
It was originally defined as the rate of heat transfer that results in the freezing or melting of 1 short ton (2,000 lb; 907 kg) of pure ice at 0 °C (32 °F) in 24 hours. [1] [2] The modern definition is exactly 12,000 Btu IT /h (3.516853 kW). Air-conditioning and refrigeration equipment capacity in the U.S. is often specified in "tons" (of ...
The kinetic energy of a 2 kg mass travelling at 1 m/s, or a 1 kg mass travelling at 1.41 m/s. The energy required to lift an apple up 1 m, assuming the apple has a mass of 101.97 g. The heat required to raise the temperature of 0.239 g of water from 0 °C to 1 °C. [15] The kinetic energy of a 50 kg human moving very slowly (0.2 m/s or 0.72 km/h).
The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J⋅s, which is equal to kg⋅m 2 ⋅s −1, where the metre and the second are defined in terms of c and Δν Cs. —
The SI system after the 2019 definition: Base units as defined in terms of physical constants and other base units. Here, means is used in the definition of . The SI system after 1983, but before the 2019 redefinition: Base unit definitions in terms of other base units (for example, the metre is defined as the distance travelled by light in a specific fraction of a second), with the constants ...