Search results
Results from the WOW.Com Content Network
Hence, it is technically more correct to discuss singular points of a smooth mapping here rather than a singular point of a curve. The above definitions can be extended to cover implicit curves which are defined as the zero set f − 1 ( 0 ) {\displaystyle f^{-1}(0)} of a smooth function , and it is not necessary just to consider ...
Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers.So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target.
The graph of the winding number of the circle map is an example of a singular function. In mathematics, a real-valued function f on the interval [a, b] is said to be singular if it has the following properties: f is continuous on [a, b]. (**)
Branch points are generally the result of a multi-valued function, such as or (), which are defined within a certain limited domain so that the function can be made single-valued within the domain. The cut is a line or curve excluded from the domain to introduce a technical separation between discontinuous values of the function.
A plane curve defined by an implicit equation (,) =,where F is a smooth function is said to be singular at a point if the Taylor series of F has order at least 2 at this point.. The reason for this is that, in differential calculus, the tangent at the point (x 0, y 0) of such a curve is defined by the equation
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded (in any small sector) by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates.