Search results
Results from the WOW.Com Content Network
In summary, a set of the real numbers is an interval, if and only if it is an open interval, a closed interval, or a half-open interval. [4] [5] A degenerate interval is any set consisting of a single real number (i.e., an interval of the form [a, a]). [6] Some authors include the empty set in this definition.
It is not closed since its complement in is = (,] [,), which is not open; indeed, an open interval contained in cannot contain 1, and it follows that cannot be a union of open intervals. Hence, I {\displaystyle I} is an example of a set that is open but not closed.
If both types of brackets are the same, the entire interval may be referred to as closed or open as appropriate. Whenever infinity or negative infinity is used as an endpoint (in the case of intervals on the real number line), it is always considered open and adjoined to a parenthesis.
Some sets are neither open nor closed, for instance the half-open interval [,) in the real numbers. The ray [ 1 , + ∞ ) {\displaystyle [1,+\infty )} is closed. The Cantor set is an unusual closed set in the sense that it consists entirely of boundary points and is nowhere dense.
The set Γ of all open intervals in forms a basis for the Euclidean topology on .. A non-empty family of subsets of a set X that is closed under finite intersections of two or more sets, which is called a π-system on X, is necessarily a base for a topology on X if and only if it covers X.
The lower limit topology is finer (has more open sets) than the standard topology on the real numbers (which is generated by the open intervals). The reason is that every open interval can be written as a (countably infinite) union of half-open intervals. For any real and , the interval [,) is clopen in (i.e., both open and closed).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The closed interval [,) in the standard subspace topology is connected; although it can, for example, be written as the union of [,) and [,), the second set is not open in the chosen topology of [,). The union of [ 0 , 1 ) {\displaystyle [0,1)} and ( 1 , 2 ] {\displaystyle (1,2]} is disconnected; both of these intervals are open in the standard ...