enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aeroelasticity - Wikipedia

    en.wikipedia.org/wiki/Aeroelasticity

    Equations for divergence of a simple beam Divergence can be understood as a simple property of the differential equation(s) governing the wing deflection. For example, modelling the airplane wing as an isotropic Euler–Bernoulli beam, the uncoupled torsional equation of motion is = ′,

  3. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    A control system includes control surfaces which, when deflected, generate a moment (or couple from ailerons) about the cg which rotates the aircraft in pitch, roll, and yaw. For example, a pitching moment comes from a force applied at a distance forward or aft of the cg, causing the aircraft to pitch up or down.

  4. Flight control surfaces - Wikipedia

    en.wikipedia.org/wiki/Flight_control_surfaces

    A raised aileron reduces lift on that wing and a lowered one increases lift, so moving the aileron control in this way causes the left wing to drop and the right wing to rise. This causes the aircraft to roll to the left and begin to turn to the left. Centering the control returns the ailerons to the neutral position, maintaining the bank angle ...

  5. Stability derivatives - Wikipedia

    en.wikipedia.org/wiki/Stability_derivatives

    Deflection of control surfaces modifies the pressure distribution over the vehicle, and these are dealt with by including perturbations in forces and moments due to control deflection. The fin deflection is normally denoted (zeta). Including these terms, the equations of motion become:

  6. Aileron - Wikipedia

    en.wikipedia.org/wiki/Aileron

    The down moving aileron also adds energy to the boundary layer. The edge of the aileron directs air flow from the underside of the wing to the upper surface of the aileron, thus creating a lifting force added to the lift of the wing. This reduces the needed deflection of the aileron.

  7. Adverse yaw - Wikipedia

    en.wikipedia.org/wiki/Adverse_yaw

    Adverse yaw is a secondary effect of the inclination of the lift vectors on the wing due to its rolling velocity and of the application of the ailerons. [2]: 327 Some pilot training manuals focus mainly on the additional drag caused by the downward-deflected aileron [3] [4] and make only brief [5] or indirect [6] mentions of roll effects.

  8. Dihedral (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Dihedral_(aeronautics)

    For example, the dihedral angle is usually greater on low-wing aircraft than on otherwise-similar high-wing aircraft. This is because "highness" of a wing (or "lowness" of vertical center of gravity compared to the wing) naturally creates more dihedral effect itself. This makes it so less dihedral angle is needed to get the amount of dihedral ...

  9. Aileron roll - Wikipedia

    en.wikipedia.org/wiki/Aileron_roll

    Note the aileron deflection on the right wing. Diagram of how an aileron roll is performed in relation to other common rolls. The aileron roll is an aerobatic maneuver in which an aircraft does a full 360° revolution about its longitudinal axis. When executed properly, there is no appreciable change in altitude and the aircraft exits the ...