Search results
Results from the WOW.Com Content Network
The importance of Stokes' law is illustrated by the fact that it played a critical role in the research leading to at least three Nobel Prizes. [5] Stokes' law is important for understanding the swimming of microorganisms and sperm; also, the sedimentation of small particles and organisms in water, under the force of gravity. [5]
The Stokes I, Q, U and V parameters. The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation.They were defined by George Gabriel Stokes in 1851, [1] [2] as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (I), (fractional) degree of ...
In addition, given the very large memory necessary, the integration of the solution in time must be done by an explicit method. This means that in order to be accurate, the integration, for most discretization methods, must be done with a time step, Δ t {\displaystyle \Delta t} , small enough such that a fluid particle moves only a fraction of ...
A portion of the two dimensional grid used for Discretization is shown below: Graph of 2 dimensional plot. In addition to the east (E) and west (W) neighbors, a general grid node P, now also has north (N) and south (S) neighbors. The same notation is used here for all faces and cell dimensions as in one dimensional analysis.
First the system is progressed in time to a mid-time-step position, solving the above transport equations for mass and momentum using a suitable advection method. This is denoted the predictor step. At this point an initial projection may be implemented such that the mid-time-step velocity field is enforced as divergence free.
The small time behavior of the flow is then found through simplification of the incompressible Navier–Stokes equations using the initial flow to give a step-by-step solution as time progresses. An exact solution in two spatial dimensions is known, and is presented below. Animation of a Taylor-Green Vortex using colour coded Lagrangian tracers
In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...
In the analysis of a flow, it is often desirable to reduce the number of equations and/or the number of variables. The incompressible Navier–Stokes equation with mass continuity (four equations in four unknowns) can be reduced to a single equation with a single dependent variable in 2D, or one vector equation in 3D.