Search results
Results from the WOW.Com Content Network
To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x . The main term on the left is Φ (1); which turns out to be the dominant terms of the prime number theorem , and the main correction is the sum over non-trivial zeros of the zeta function.
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.
More precisely, they showed that there exist positive constants c and C such that for all sufficiently large numbers N, every even number less than N is the sum of two primes, with at most CN 1 − c exceptions. In particular, the set of even integers that are not the sum of two primes has density zero.
There exists a natural number N such that every even integer n larger than N is a sum of a prime less than or equal to n 0.95 and a number with at most two prime factors. Tomohiro Yamada claimed a proof of the following explicit version of Chen's theorem in 2015: [ 7 ]
For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that x / log x is a good approximation to π(x) (where log here means the natural logarithm), in the sense that the limit of the quotient of the two functions π(x) and x / log x as x increases without ...
Let π(x) be the prime-counting function that gives the number of primes less than or equal to x, for any real number x. The prime number theorem then states that x / log x is a good approximation to π(x), in the sense that the limit of the quotient of the two functions π(x) and x / log x as x increases without bound is 1:
Goldbach's weak conjecture, every odd number greater than 5 can be expressed as the sum of three primes, is a consequence of Goldbach's conjecture. Ivan Vinogradov proved it for large enough n (Vinogradov's theorem) in 1937, [1] and Harald Helfgott extended this to a full proof of Goldbach's weak conjecture in 2013. [2] [3] [4]
Let (), the prime-counting function, denote the number of primes less than or equal to . If q {\displaystyle q} is a positive integer and a {\displaystyle a} is coprime to q {\displaystyle q} , we let π ( x ; q , a ) {\displaystyle \pi (x;q,a)} denote the number of primes less than or equal to x {\displaystyle x} which are equal to a ...