Search results
Results from the WOW.Com Content Network
Gaussian processes are also commonly used to tackle numerical analysis problems such as numerical integration, solving differential equations, or optimisation in the field of probabilistic numerics. Gaussian processes can also be used in the context of mixture of experts models, for example.
Gaussian process approximations can often be expressed in terms of assumptions on under which and can be calculated with much lower complexity. Since these assumptions are generally not believed to reflect reality, the likelihood and the best predictor obtained in this way are not exact, but they are meant to be close to their original values.
There are many examples of Markov processes, Gaussian processes, and other processes that can be enhanced as rough paths. [16] There are, in particular, many results on the solution to differential equation driven by fractional Brownian motion that have been proved using a combination of Malliavin calculus and rough path theory.
Laplace's method is widely used and was pioneered in the context of neural networks by David MacKay, [5] and for Gaussian processes by Williams and Barber. [ 6 ] References
In applied mathematics, the Wiener process is used to represent the integral of a white noise Gaussian process, and so is useful as a model of noise in electronics engineering (see Brownian noise), instrument errors in filtering theory and disturbances in control theory. The Wiener process has applications throughout the mathematical sciences.
The Ornstein–Uhlenbeck process is an example of a Gaussian process that has a bounded variance and admits a stationary probability distribution, in contrast to the Wiener process; the difference between the two is in their "drift" term. For the Wiener process the drift term is constant, whereas for the Ornstein–Uhlenbeck process it is ...
Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process ...
Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensional Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and diffusion equations and to define the Weierstrass transform.