enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin( α + β ) = sin α cos β + cos α sin ...

  4. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    To prove the law of tangents one can start with the law of sines: a sin ⁡ α = b sin ⁡ β = d , {\displaystyle {\frac {a}{\sin \alpha }}={\frac {b}{\sin \beta }}=d,} where ⁠ d {\displaystyle d} ⁠ is the diameter of the circumcircle , so that ⁠ a = d sin ⁡ α {\displaystyle a=d\sin \alpha } ⁠ and ⁠ b = d sin ⁡ β {\displaystyle ...

  5. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles.

  6. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The quantity 206 265 ″ is approximately equal to the number of arcseconds in a circle (1 296 000 ″), divided by 2π, or, the number of arcseconds in 1 radian. The exact formula is = ⁡ (″) and the above approximation follows when tan X is replaced by X.

  7. Morrie's law - Wikipedia

    en.wikipedia.org/wiki/Morrie's_law

    Morrie's law is a special trigonometric identity.Its name is due to the physicist Richard Feynman, who used to refer to the identity under that name.Feynman picked that name because he learned it during his childhood from a boy with the name Morrie Jacobs and afterwards remembered it for all of his life.

  8. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity involving the cotangent and the cosecant also follows from the Pythagorean theorem.

  9. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.