Search results
Results from the WOW.Com Content Network
The Himalayan tectonics result in long term deformation. This includes shortening across the Himalayas that range from 900 to 1,500 km. Said shortening is a product of the significant ongoing seismic activity. The continued convergence of the Indian plate with the Eurasian plate results in mega earthquakes.
The dilemma is that the South Asian monsoon was believed to have originated from topographic rise of the Himalayas and Tibetan Plateau. The channel flow model predicts that the rise of Tibetan Plateau requires the presence of South Asian monsoon, which leaves the Himalayas as the only possible candidate responsible for initiating the monsoon ...
Scientists have known that the collision of the two tectonic plates, which began roughly 60 million years ago, caused the edge of the Eurasian plate to buckle, bulging and twisting into what we ...
The Himalayas, or Himalaya (/ ˌ h ɪ m ə ˈ l eɪ. ə, h ɪ ˈ m ɑː l ə j ə / HIM-ə-LAY-ə, hih-MAH-lə-yə) [b] is a mountain range in Asia, separating the plains of the Indian subcontinent from the Tibetan Plateau. The range has several peaks exceeding an elevation of 8,000 m (26,000 ft) including Mount Everest, the highest mountain on ...
Crustal thickening has an upward component of motion and often occurs when continental crust is thrust onto continental crust. Basically nappes (thrust sheets) from each plate collide and begin to stack one on top of the other; evidence of this process can be seen in preserved ophiolitic nappes (preserved in the Himalayas) and in rocks with an inverted metamorphic gradient.
The Alpine orogeny is caused by the continents Africa, Arabia and India and the small Cimmerian Plate colliding (from the south) with Eurasia in the north. Convergent movements between the tectonic plates (the African Plate, the Arabian Plate and the Indian Plate from the south, the Eurasian Plate and the Anatolian Sub-Plate from the north, and many smaller plates and microplates) had already ...
Satellite image of the Himalayas Spatial arrangement of the Himalayan tectonostratigraphic zones. Modified from N.R. McKenzie et al 2011 [1]. Pre-collisional Himalaya is the arrangement of the Himalayan rock units before mountain-building processes resulted in the collision of Asia and India.
Laurasia became North America and Eurasia, while Gondwana split into South America, Africa, Australia, Antarctica and the Indian subcontinent, which collided with the Asian plate. This impact gave rise to the Himalayas. The Tethys Sea, which had separated the northern continents from Africa and India, began to close up, forming the ...