Search results
Results from the WOW.Com Content Network
In mathematics, a self-similar object is exactly or approximately similar to a part of itself (i.e., the whole has the same shape as one or more of the parts). Many objects in the real world, such as coastlines , are statistically self-similar: parts of them show the same statistical properties at many scales. [ 2 ]
Like approximate entropy (ApEn), Sample entropy (SampEn) is a measure of complexity. [1] But it does not include self-similar patterns as ApEn does. For a given embedding dimension, tolerance and number of data points, SampEn is the negative natural logarithm of the probability that if two sets of simultaneous data points of length have distance < then two sets of simultaneous data points of ...
The rotation number is invariant under topological conjugacy, and even monotone topological semiconjugacy: if f and g are two homeomorphisms of the circle and = for a monotone continuous map h of the circle into itself (not necessarily homeomorphic) then f and g have the same rotation numbers.
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
Here follow some examples and reasons: The approach of a hawk to its prey in classical pursuit , assuming the prey travels in a straight line. Their sharpest view is at an angle to their direction of flight; this angle is the same as the spiral's pitch.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1 / 1 , 3 / 2 , 7 / 5 , 17 / 12 , and 41 / 29 , so the sequence of Pell ...
Kawasaki's theorem or Kawasaki–Justin theorem is a theorem in the mathematics of paper folding that describes the crease patterns with a single vertex that may be folded to form a flat figure. It states that the pattern is flat-foldable if and only if alternatingly adding and subtracting the angles of consecutive folds around the vertex gives ...