Search results
Results from the WOW.Com Content Network
The more precise mathematical definition is that there is never translational symmetry in more than n – 1 linearly independent directions, where n is the dimension of the space filled, e.g., the three-dimensional tiling displayed in a quasicrystal may have translational symmetry in two directions.
An example of such a tiling is shown in the adjacent diagram (see the image description for more information). A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic. [3]
In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]
An aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or prototiles) is aperiodic if copies of these tiles can form only non-periodic tilings. The Penrose tilings are a well-known example of aperiodic tilings. [1] [2]
A tiling that lacks a repeating pattern is called "non-periodic". An aperiodic tiling uses a small set of tile shapes that cannot form a repeating pattern (an aperiodic set of prototiles). A tessellation of space, also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions.
A Penrose tiling with rhombi exhibiting fivefold symmetry. A Penrose tiling is an example of an aperiodic tiling.Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches.
A Euclidean graph (a graph embedded in some Euclidean space) is periodic if there exists a basis of that Euclidean space whose corresponding translations induce symmetries of that graph (i.e., application of any such translation to the graph embedded in the Euclidean space leaves the graph unchanged). Equivalently, a periodic Euclidean graph is ...
An aperiodic graph. The cycles in this graph have lengths 5 and 6; therefore, there is no k > 1 that divides all cycle lengths. A strongly connected graph with period three. In the mathematical area of graph theory, a directed graph is said to be aperiodic if there is no integer k > 1 that divides the length of every cycle of the graph.