Search results
Results from the WOW.Com Content Network
If a pop operation on the stack causes the stack pointer to move past the origin of the stack, a stack underflow occurs. If a push operation causes the stack pointer to increment or decrement beyond the maximum extent of the stack, a stack overflow occurs. Some environments that rely heavily on stacks may provide additional operations, for example:
A push operation decrements the pointer and copies the data to the stack; a pop operation copies data from the stack and then increments the pointer. Each procedure called in the program stores procedure return information (in yellow) and local data (in other colors) by pushing them onto the stack.
(In the examples that follow, a, b, and c are (direct or calculated) addresses referring to memory cells, while reg1 and so on refer to machine registers.) C = A+B 0-operand (zero-address machines), so called stack machines: All arithmetic operations take place using the top one or two positions on the stack: [9] push a, push b, add, pop c.
The Love2D library which uses the Lua programming language implements channels with push and pop operations similar to stacks. The pop operation will block so as long as there is data resident on the stack. A demand operation is equivalent to pop, except it will block until there is data on the stack
In each step, it chooses a transition by indexing a table by input symbol, current state, and the symbol at the top of the stack. A pushdown automaton can also manipulate the stack, as part of performing a transition. The manipulation can be to push a particular symbol to the top of the stack, or to pop off the top of the stack.
Commonly provided are dup, to duplicate the element atop the stack, exch (or swap), to exchange elements atop the stack (the first becomes second and the second becomes first), roll, to cyclically permute elements in the stack or on part of the stack, pop (or drop), to discard the element atop the stack (push is implicit), and others. These ...
The ability to push and pop FLAGS registers lets a program manipulate information in the FLAGS in ways for which machine-language instructions do not exist. For example, the cld and std instructions clear and set the direction flag (DF), respectively; but there is no instruction to complement DF.
Typically push and pop are translated into multiple micro-ops, to separately add/subtract the stack pointer, and perform the load/store in memory. [3] Newer processors contain a dedicated stack engine to optimize stack operations. Pentium M was the first x86 processor to introduce a stack engine.