enow.com Web Search

  1. Ad

    related to: formula for discriminant of a quadratic function with 3 steps examples pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    For quadratic equations with rational coefficients, if the discriminant is a square number, then the roots are rational—in other cases they may be quadratic irrationals. If the discriminant is zero, then there is exactly one real root − b 2 a , {\displaystyle -{\frac {b}{2a}},} sometimes called a repeated or double root or two equal roots.

  3. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    Geometrically, the discriminant of a quadratic form in three variables is the equation of a quadratic projective curve. The discriminant is zero if and only if the curve is decomposed in lines (possibly over an algebraically closed extension of the field). A quadratic form in four variables is the equation of a projective surface.

  4. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    The roots of the quadratic function y = ⁠ 1 / 2 ⁠ x 2 − 3x + ⁠ 5 / 2 ⁠ are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  5. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...

  6. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    A univariate quadratic function can be expressed in three formats: [2] = + + is called the standard form, = () is called the factored form, where r 1 and r 2 are the roots of the quadratic function and the solutions of the corresponding quadratic equation.

  7. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    An integer that occurs as the discriminant of a quadratic number field is called a fundamental discriminant. [3] Cyclotomic fields: let n > 2 be an integer, let ζ n be a primitive nth root of unity, and let K n = Q(ζ n) be the nth cyclotomic field. The discriminant of K n is given by [2] [4]

  8. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    If the discriminant of such a polynomial is negative, then both roots of the quadratic equation have imaginary parts. In particular, if b and c are real numbers and b 2 − 4 c < 0, all the convergents of this continued fraction "solution" will be real numbers, and they cannot possibly converge to a root of the form u + iv (where v ≠ 0 ...

  9. Hurwitz polynomial - Wikipedia

    en.wikipedia.org/wiki/Hurwitz_polynomial

    [2] [3] A polynomial function P(s) of a complex variable s is said to be Hurwitz if the following conditions are satisfied: P(s) is real when s is real. The roots of P(s) have real parts which are zero or negative. Hurwitz polynomials are important in control systems theory, because they represent the characteristic equations of stable linear ...

  1. Ad

    related to: formula for discriminant of a quadratic function with 3 steps examples pdf