enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.

  3. Activity selection problem - Wikipedia

    en.wikipedia.org/wiki/Activity_selection_problem

    Unlike the unweighted version, there is no greedy solution to the weighted activity selection problem. However, a dynamic programming solution can readily be formed using the following approach: [1] Consider an optimal solution containing activity k. We now have non-overlapping activities on the left and right of k. We can recursively find ...

  4. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.

  5. Min-conflicts algorithm - Wikipedia

    en.wikipedia.org/wiki/Min-conflicts_algorithm

    The randomness helps min-conflicts avoid local minima created by the greedy algorithm's initial assignment. In fact, Constraint Satisfaction Problems that respond best to a min-conflicts solution do well where a greedy algorithm almost solves the problem. Map coloring problems do poorly with Greedy Algorithm as well as Min-Conflicts. Sub areas ...

  6. Ford–Fulkerson algorithm - Wikipedia

    en.wikipedia.org/wiki/Ford–Fulkerson_algorithm

    The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network.It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified [1] or it is specified in several implementations with different running times. [2]

  7. Category:Greedy algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Greedy_algorithms

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  8. Reverse-delete algorithm - Wikipedia

    en.wikipedia.org/wiki/Reverse-delete_algorithm

    This algorithm is a greedy algorithm, choosing the best choice given any situation. It is the reverse of Kruskal's algorithm, which is another greedy algorithm to find a minimum spanning tree. Kruskal’s algorithm starts with an empty graph and adds edges while the Reverse-Delete algorithm starts with the original graph and deletes edges from it.

  9. Set cover problem - Wikipedia

    en.wikipedia.org/wiki/Set_cover_problem

    This greedy algorithm actually achieves an approximation ratio of (′) where ′ is the maximum cardinality set of . For δ − {\displaystyle \delta -} dense instances, however, there exists a c ln ⁡ m {\displaystyle c\ln {m}} -approximation algorithm for every c > 0 {\displaystyle c>0} .