enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convex polygon - Wikipedia

    en.wikipedia.org/wiki/Convex_polygon

    An example of a convex polygon: a regular pentagon. In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). [1]

  3. Steinitz's theorem - Wikipedia

    en.wikipedia.org/wiki/Steinitz's_theorem

    The method continues by setting up a system of linear equations in the vertex coordinates, according to which each remaining vertex should be placed at the average of its neighbors. Then as Tutte showed, this system of equations will have a unique solution in which each face of the graph is drawn as a convex polygon. [17]

  4. Zonogon - Wikipedia

    en.wikipedia.org/wiki/Zonogon

    In geometry, a zonogon is a centrally-symmetric, convex polygon. [1] Equivalently, it is a convex polygon whose sides can be grouped into parallel pairs with equal lengths and opposite orientations. Examples

  5. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    The convex hull of a simple polygon is divided by the polygon into pieces, one of which is the polygon itself and the rest are pockets bounded by a piece of the polygon boundary and a single hull edge. Although many algorithms have been published for the problem of constructing the convex hull of a simple polygon, nearly half of them are ...

  6. List of convexity topics - Wikipedia

    en.wikipedia.org/wiki/List_of_convexity_topics

    The convexity property can make optimization in some sense "easier" than the general case - for example, any local minimum must be a global minimum. Convex polygon - a 2-dimensional polygon whose interior is a convex set in the Euclidean plane. Convex polytope - an n-dimensional polytope which is also a convex set in the Euclidean n-dimensional ...

  7. Algorithmic problems on convex sets - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_problems_on...

    assert that y not in S(K,-ε).Closely related to the problems on convex sets is the following problem on a compact convex set K and a convex function f: R n → R given by an approximate value oracle: Weak constrained convex function minimization (WCCFM): given a rational ε>0, find a vector in S(K,ε) such that f(y) ≤ f(x) + ε for all x in ...

  8. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...

  9. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas.