Search results
Results from the WOW.Com Content Network
For loop illustration, from i=0 to i=2, resulting in data1=200. A for-loop statement is available in most imperative programming languages. Even ignoring minor differences in syntax, there are many differences in how these statements work and the level of expressiveness they support. Generally, for-loops fall into one of four categories:
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
Iterative Stencil Loops (ISLs) or Stencil computations are a class of numerical data processing solution [1] which update array elements according to some fixed pattern, called a stencil. [2] They are most commonly found in computer simulations , e.g. for computational fluid dynamics in the context of scientific and engineering applications.
Curvilinear barrel distortion Curvilinear pincushion distortion. Curvilinear perspective, also five-point perspective, is a graphical projection used to draw 3D objects on 2D surfaces, for which (straight) lines on the 3D object are projected to curves on the 2D surface that are typically not straight (hence the qualifier "curvilinear" [citation needed]).
The iteration form of the Eiffel loop can also be used as a boolean expression when the keyword loop is replaced by either all (effecting universal quantification) or some (effecting existential quantification). This iteration is a boolean expression which is true if all items in my_list have counts greater than three:
There are subtle differences and distinctions in the use of the terms "generator" and "iterator", which vary between authors and languages. [5] In Python, a generator is an iterator constructor: a function that returns an iterator. An example of a Python generator returning an iterator for the Fibonacci numbers using Python's yield statement ...
In loop-carried dependence, statements in an iteration of a loop depend on statements in another iteration of the loop. Loop-Carried Dependence uses a modified version of the dependence notation seen earlier. Example of loop-carried dependence where S1[i] ->T S1[i + 1], where i indicates the current iteration, and i + 1 indicates the next ...
One of several methods of finding a series formula for fractional iteration, making use of a fixed point, is as follows. [15] First determine a fixed point for the function such that f(a) = a. Define f n (a) = a for all n belonging to the reals. This, in some ways, is the most natural extra condition to place upon the fractional iterates.