enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    Quadratic formula. The roots of the quadratic function y = ⁠ 1 2 ⁠x2 − 3x + ⁠ 5 2 ⁠ are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  3. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Quadratic equation. In mathematics, a quadratic equation (from Latin quadratus ' square ') is an equation that can be rearranged in standard form as [1] where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)

  4. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    The theorem can be proved algebraically using four copies of the same triangle arranged symmetrically around a square with side c, as shown in the lower part of the diagram. [5] This results in a larger square, with side a + b and area (a + b) 2. The four triangles and the square side c must have the same area as the larger square,

  5. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    de Moivre. Euler. Fourier. v. t. e. In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles.

  6. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Animation depicting the process of completing the square. (Details, animated GIF version) In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form ⁠ ⁠ to the form ⁠ ⁠ for some values of ⁠ ⁠ and ⁠ ⁠. [1] In terms of a new quantity ⁠ ⁠, this expression is a quadratic ...

  7. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Pythagorean identities. Identity 1: The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by . Similarly. Identity 2: The following accounts for all three reciprocal functions. Proof 2: Refer to the triangle diagram above.

  8. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    The square root of 2 was the first such number to be proved irrational. Theodorus of Cyrene proved the irrationality of the square roots of non-square natural numbers up to 17, but stopped there, probably because the algebra he used could not be applied to the square root of numbers greater than 17. Euclid's Elements Book 10 is dedicated to ...

  9. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions. The identity is. 1. {\displaystyle \sin ^ {2}\theta +\cos ^ {2 ...