Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
In probability theory and statistics, the negative hypergeometric distribution describes probabilities for when sampling from a finite population without replacement in which each sample can be classified into two mutually exclusive categories like Pass/Fail or Employed/Unemployed. As random selections are made from the population, each ...
Probability mass function for Wallenius' Noncentral Hypergeometric Distribution for different values of the odds ratio ω. m 1 = 80, m 2 = 60, n = 100, ω = 0.1 ... 20. In probability theory and statistics, Wallenius' noncentral hypergeometric distribution (named after Kenneth Ted Wallenius) is a generalization of the hypergeometric distribution where items are sampled with bias.
[16] [21] In a slightly different formulation suited to the use of log-likelihoods (see Wilks' theorem), the test statistic is twice the difference in log-likelihoods and the probability distribution of the test statistic is approximately a chi-squared distribution with degrees-of-freedom (df) equal to the difference in df's between the two ...
The PMF can be obtained in Monte Carlo or molecular dynamics simulations to examine how a system's energy changes as a function of some specific reaction coordinate parameter. For example, it may examine how the system's energy changes as a function of the distance between two residues, or as a protein is pulled through a lipid bilayer.
The probability distribution of employed versus unemployed respondents in a sample of n respondents can be described as a noncentral hypergeometric distribution. The description of biased urn models is complicated by the fact that there is more than one noncentral hypergeometric distribution. Which distribution one gets depends on whether items ...
The univariate noncentral hypergeometric distribution may be derived alternatively as a conditional distribution in the context of two binomially distributed random variables, for example when considering the response to a particular treatment in two different groups of patients participating in a clinical trial.
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...