Search results
Results from the WOW.Com Content Network
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
In 1911 Max Dehn proposed that the word problem was an important area of study in its own right, [1] together with the conjugacy problem and the group isomorphism problem. In 1912 he gave an algorithm that solves both the word and conjugacy problem for the fundamental groups of closed orientable two-dimensional manifolds of genus greater than ...
For instance, if the one solving the math word problem has a limited understanding of the language (English, Spanish, etc.) they are more likely to not understand what the problem is even asking. In Example 1 (above), if one does not comprehend the definition of the word "spent," they will misunderstand the entire purpose of the word problem.
In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.
Two of the problems are trivial (the number of equivalence classes is 0 or 1), five problems have an answer in terms of a multiplicative formula of n and x, and the remaining five problems have an answer in terms of combinatorial functions (Stirling numbers and the partition function for a given number of parts).
Word problem (mathematics education), a type of textbook exercise or exam question to have students apply abstract mathematical concepts to real-world situations; Word problem (mathematics), a decision problem for algebraic identities in mathematics and computer science; Word problem for groups, the problem of recognizing the identity element ...
In the initial problem, the 100 prisoners are successful if the longest cycle of the permutation has a length of at most 50. Their survival probability is therefore equal to the probability that a random permutation of the numbers 1 to 100 contains no cycle of length greater than 50. This probability is determined in the following.
The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...