Search results
Results from the WOW.Com Content Network
This is true for all enthalpies of formation. The standard enthalpy of formation is measured in units of energy per amount of substance, usually stated in kilojoule per mole (kJ mol −1), but also in kilocalorie per mole, joule per mole or kilocalorie per gram (any combination of these units conforming to the energy per mass or amount guideline).
Benson group-increment theory (BGIT), group-increment theory, or Benson group additivity uses the experimentally calculated heat of formation for individual groups of atoms to calculate the entire heat of formation for a molecule under investigation. This can be a quick and convenient way to determine theoretical heats of formation without ...
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...
It may provide or confirm basic enthalpy data needed for the calculation of phase diagrams of metals, via CALPHAD or ab initio quantum chemistry methods. For a binary system composed by elements A and B, a generic Miedema Formula could be cast as Δ H = f ( E l e m e n t A , P h i A , n W S A , V A , E l e m e n t B .
Standard enthalpy of formation is the enthalpy change when one mole of any compound is formed from its constituent elements in their standard states. The enthalpy of formation of one mole of ethane gas refers to the reaction 2 C (graphite) + 3 H 2 (g) → C 2 H 6 (g).
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
The standard Gibbs free energy of formation of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of that substance from its component elements, in their standard states (the most stable form of the element at 25 °C and 100 kPa). Its symbol is Δ f G˚.
These four equations and 4 unknowns work out to estimations for P (-10.01 kcal/mol), S (-4.99 kcal/mol), T (-2.03 kcal/mol) and Q (-0.12 kcal/mol). Of course the accuracy will increase when the dataset increases. the data allow the calculation of heat of formation for isomers. For example, the pentanes: n-pentane = 2P + 3S = -35 (exp. -35 kcal/mol)