Search results
Results from the WOW.Com Content Network
One exception is phosphorus, for which the most stable form at 1 bar is black phosphorus, but white phosphorus is chosen as the standard reference state for zero enthalpy of formation. [2] For example, the standard enthalpy of formation of carbon dioxide is the enthalpy of the following reaction under the above conditions:
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
Enthalpy of combustion, Δ c H o –4163 kJ/mol Heat capacity, c p: 197.66 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas –167.2 kJ/mol Standard molar entropy, S o gas: 388.82 J/(mol K) Heat capacity, c p: 142.6 J/(mol K) at 25 °C van der Waals' constants [3] a = 2471 L 2 kPa/mol 2 b = 0.1735 liter per mole
Miedema's model is a semi-empirical approach for estimating the heat of formation of solid or liquid metal alloys and compounds in the framework of thermodynamic calculations for metals and minerals. [1]
Std enthalpy change of formation, Δ f H o liquid? kJ/mol Standard molar entropy, S o liquid: 117.8 J/(mol K) Heat capacity, c p: 67.4 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas +52.47 kJ/mol Standard molar entropy, S o gas: 219.32 J/(mol K) Enthalpy of combustion, Δ c H o –1387.4 kJ/mol Heat capacity, c p: 42.9 ...
As determined by the enthalpies below the corresponding molecules, the enthalpy of reaction for 2-methyl-1-butene going to 2-methyl-butane is −29.07 kcal/mol, which is in great agreement with the value calculated from NIST, [15] −28.31 kcal/mol. For 2-butanone going to 2-butanol, enthalpy of reaction is −13.75 kcal/mol, which again is in ...
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 ...
The SI unit of specific heat capacity is joule per kelvin per kilogram, J⋅kg −1 ⋅K −1. [2] For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg −1 ⋅K −1. [3]