Search results
Results from the WOW.Com Content Network
The bottom bit of the opcode is used to indicate whether the AVX512 index register is considered a vector of sixteen signed 32-bit indexes (bit 0 not set) or eight signed 64-bit indexes (bit 0 set) The instructions all support operation masking by opmask registers. The only supported vector width is 512 bits.
Instruction set extensions that have been added to the x86 instruction set in order to support hardware virtualization.These extensions provide instructions for entering and leaving a virtualized execution context and for loading virtual-machine control structures (VMCSs), which hold the state of the guest and host, along with fields which control processor behavior within the virtual machine.
These instructions are also available in 32-bit mode, in which they operate on 32-bit registers (eax, ebx, etc.) and values instead of their 16-bit (ax, bx, etc.) counterparts. The updated instruction set is grouped according to architecture ( i186 , i286 , i386 , i486 , i586 / i686 ) and is referred to as (32-bit) x86 and (64-bit) x86-64 (also ...
The FMA instruction set is an extension to the 128 and 256-bit Streaming SIMD Extensions instructions in the x86 microprocessor instruction set to perform fused multiply–add (FMA) operations. [1] There are two variants: FMA4 is supported in AMD processors starting with the Bulldozer architecture. FMA4 was performed in hardware before FMA3 was.
x86-64 (also known as x64, x86_64, AMD64, and Intel 64) [note 1] is a 64-bit extension of the x86 instruction set architecture first announced in 1999. It introduces two new operating modes: 64-bit mode and compatibility mode, along with a new four-level paging mechanism.
The 64-bit operating system kernel checks and switches the CPU into Long mode and then starts new kernel-mode threads running 64-bit code. With a computer running UEFI, the UEFI firmware (except CSM and legacy Option ROM), the UEFI boot loader and the UEFI operating system kernel all run in Long mode.
Copy a 32-bit, 64-bit or 128-bit memory operand to all elements of a XMM or YMM vector register. VINSERTF128: Replaces either the lower half or the upper half of a 256-bit YMM register with the value of a 128-bit source operand. The other half of the destination is unchanged. VEXTRACTF128
The aged 32-bit x86 was competing with much more advanced 64-bit RISC architectures which could address much more memory. Intel and the whole x86 ecosystem needed 64-bit memory addressing if x86 was to survive the 64-bit computing era, as workstation and desktop software applications were soon to start hitting the limits of 32-bit memory ...