enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homotopy - Wikipedia

    en.wikipedia.org/wiki/Homotopy

    A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. [3] In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra.

  3. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    For example, the category of (reasonable) topological spaces has a structure of a model category where a weak equivalence is a weak homotopy equivalence, a cofibration a certain retract and a fibration a Serre fibration. [20] Another example is the category of non-negatively graded chain complexes over a fixed base ring. [21

  4. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    The homotopy groups are fundamental to homotopy theory, which in turn stimulated the development of model categories. It is possible to define abstract homotopy groups for simplicial sets. Homology groups are similar to homotopy groups in that they can represent "holes" in a topological space. However, homotopy groups are often very complex and ...

  5. Homotopy category - Wikipedia

    en.wikipedia.org/wiki/Homotopy_category

    The older definition of the homotopy category hTop, called the naive homotopy category [1] for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps f : X → Y are considered the same in the naive homotopy category if one can be continuously deformed to the other.

  6. Homotopy colimit and limit - Wikipedia

    en.wikipedia.org/wiki/Homotopy_colimit_and_limit

    A homotopy pullback (or homotopy fiber-product) is the dual concept of a homotopy pushout. It satisfies the universal property of a pullback up to homotopy. [ citation needed ] Concretely, given f : X → Z {\displaystyle f:X\to Z} and g : Y → Z {\displaystyle g:Y\to Z} , it can be constructed as

  7. Regular homotopy - Wikipedia

    en.wikipedia.org/wiki/Regular_homotopy

    Any two knots in 3-space are equivalent by regular homotopy, though not by isotopy. This curve has total curvature 6π, and turning number 3.. The Whitney–Graustein theorem classifies the regular homotopy classes of a circle into the plane; two immersions are regularly homotopic if and only if they have the same turning number – equivalently, total curvature; equivalently, if and only if ...

  8. Homeotopy - Wikipedia

    en.wikipedia.org/wiki/Homeotopy

    The homotopy group functors assign to each path-connected topological space the group () of homotopy classes of continuous maps . Another construction on a space X {\displaystyle X} is the group of all self-homeomorphisms X → X {\displaystyle X\to X} , denoted H o m e o ( X ) . {\displaystyle {\rm {Homeo}}(X).}

  9. Contractible space - Wikipedia

    en.wikipedia.org/wiki/Contractible_space

    A contractible space is precisely one with the homotopy type of a point. It follows that all the homotopy groups of a contractible space are trivial. Therefore any space with a nontrivial homotopy group cannot be contractible. Similarly, since singular homology is a homotopy invariant, the reduced homology groups of a contractible space are all ...