Search results
Results from the WOW.Com Content Network
Free radical reactions are redox reactions that occur as part of homeostasis and killing microorganisms. In these reactions, an electron detaches from a molecule and then re-attaches almost instantly. Free radicals are part of redox molecules and can become harmful to the human body if they do not reattach to the redox molecule or an antioxidant.
Current organisms require redox reactions to induce metabolism and other life processes. Metals have a tendency to lose electrons and are important for redox reactions. Metals have become so central to cellular function that the collection of metal-binding proteins (referred to as the metallomes ) accounts for over 30% of all proteins in the cell.
For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:
In reactions involving donation of a hydrogen atom, oxygen is reduced to water (H 2 O) or hydrogen peroxide (H 2 O 2). Some oxidation reactions, such as those involving monoamine oxidase or xanthine oxidase, typically do not involve free molecular oxygen. [1] [2] The oxidases are a subclass of the oxidoreductases. The use of dioxygen is the ...
The word oxygen in the literature typically refers to molecular oxygen (O 2) since it is the common product or reactant of many biogeochemical redox reactions within the cycle. [37] Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O 2 production) or sink (O 2 consumption). [36 ...
Four varieties are recognized by the International Union of Biochemistry and Molecular Biology (IUBMB), cytochromes a, cytochromes b, cytochromes c and cytochrome d. [1] Cytochrome function is linked to the reversible redox change from ferrous (Fe(II)) to the ferric (Fe(III)) oxidation state of the iron found in the heme core. [2]
In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O 2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O 2 H), superoxide (O 2-), [1] hydroxyl radical (OH.), and singlet oxygen. [2] ROS are pervasive because they are readily produced from O 2, which is ...
The overall reduction reaction from cytochrome b5 reductase aids in the control of iron in red blood cells, which dictates the amount of oxygen cells carry. [3] Cytochromes are redox proteins that are essential for energy transfer in the electron transport chain with the help of an enzyme such as a reductase. Cytochromes are categorized into ...