enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    According to some newer sources, the ATP yield during aerobic respiration is not 36–38, but only about 30–32 ATP molecules / 1 molecule of glucose [12], because: ATP : NADH+H + and ATP : FADH 2 ratios during the oxidative phosphorylation appear to be not 3 and 2, but 2.5 and 1.5 respectively.

  3. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Glycolysis produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of glucose to carbon dioxide and water, [6] while each cycle of beta oxidation of a fatty acid yields about 14 ATPs. These ATP yields are ...

  4. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    One ATP is invested in Step 1, and another ATP is invested in Step 3. Steps 1 and 3 of glycolysis are referred to as "Priming Steps". In Phase 2, two equivalents of g3p are converted to two pyruvates. In Step 7, two ATP are produced. Also, in Step 10, two further equivalents of ATP are produced. In Steps 7 and 10, ATP is generated from ADP.

  5. Substrate-level phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Substrate-level_phosphory...

    Substrate-level phosphorylation exemplified with the conversion of ADP to ATP. Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level ...

  6. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  7. Malate–aspartate shuttle - Wikipedia

    en.wikipedia.org/wiki/Malate–aspartate_shuttle

    Compare this to the glycerol 3-phosphate shuttle, which reduces FAD + to produce FADH 2, donates electrons to the quinone pool in the electron transport chain, and is capable of generating only 2 ATPs per NADH generated in glycolysis (ultimately resulting in a net gain of 36 ATPs per glucose metabolized). (These ATP numbers are prechemiosmotic ...

  8. Cellular waste product - Wikipedia

    en.wikipedia.org/wiki/Cellular_waste_product

    Aerobic respiration proceeds in a series of steps, which also increases efficiency - since glucose is broken down gradually and ATP is produced as needed, less energy is wasted as heat. This strategy results in the waste products H 2 O and CO 2 being formed in different amounts at different phases of respiration.

  9. P/O ratio - Wikipedia

    en.wikipedia.org/wiki/P/O_ratio

    Taken together, import of ADP and Pi and export of the resulting ATP results in one proton imported, subtracting from the number available for use by the ATP synthase directly. Taking this into account, it takes 8/3 +1 or 3.67 protons for vertebrate mitochondria to synthesize one ATP in the cytoplasm from ADP and Pi in the cytoplasm.