enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...

  3. Shannon–Hartley theorem - Wikipedia

    en.wikipedia.org/wiki/Shannon–Hartley_theorem

    It connects Hartley's result with Shannon's channel capacity theorem in a form that is equivalent to specifying the M in Hartley's line rate formula in terms of a signal-to-noise ratio, but achieving reliability through error-correction coding rather than through reliably distinguishable pulse levels.

  4. Channel capacity - Wikipedia

    en.wikipedia.org/wiki/Channel_capacity

    Information-theoretic analysis of communication systems that incorporate feedback is more complicated and challenging than without feedback. Possibly, this was the reason C.E. Shannon chose feedback as the subject of the first Shannon Lecture, delivered at the 1973 IEEE International Symposium on Information Theory in Ashkelon, Israel.

  5. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  6. Quantities of information - Wikipedia

    en.wikipedia.org/wiki/Quantities_of_information

    A misleading [1] information diagram showing additive and subtractive relationships among Shannon's basic quantities of information for correlated variables and . The area contained by both circles is the joint entropy H ( X , Y ) {\displaystyle \mathrm {H} (X,Y)} .

  7. Binary entropy function - Wikipedia

    en.wikipedia.org/wiki/Binary_entropy_function

    Entropy of a Bernoulli trial (in shannons) as a function of binary outcome probability, called the binary entropy function.. In information theory, the binary entropy function, denoted ⁡ or ⁡ (), is defined as the entropy of a Bernoulli process (i.i.d. binary variable) with probability of one of two values, and is given by the formula:

  8. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    The joint information is equal to the mutual information plus the sum of all the marginal information (negative of the marginal entropies) for each particle coordinate. Boltzmann's assumption amounts to ignoring the mutual information in the calculation of entropy, which yields the thermodynamic entropy (divided by the Boltzmann constant).

  9. Hartley function - Wikipedia

    en.wikipedia.org/wiki/Hartley_function

    If the base of the logarithm is 2, then the unit of uncertainty is the shannon (more commonly known as bit). If it is the natural logarithm, then the unit is the nat. Hartley used a base-ten logarithm, and with this base, the unit of information is called the hartley (aka ban or dit) in his honor. It is also known as the Hartley entropy or max ...