Search results
Results from the WOW.Com Content Network
As shown later in this article, at the onset of yielding, the magnitude of the shear yield stress in pure shear is √3 times lower than the tensile yield stress in the case of simple tension. Thus, we have: = where is tensile yield strength of the material. If we set the von Mises stress equal to the yield strength and combine the above ...
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for ...
Using the free body diagram in the right side of figure 3, and making a summation of moments about point x: = + = where w is the lateral deflection. According to Euler–Bernoulli beam theory , the deflection of a beam is related with its bending moment by: M = − E I d 2 w d x 2 . {\displaystyle M=-EI{\frac {d^{2}w}{dx^{2}}}.}
A specialized case of hydrostatic stress contains isotropic compressive stress, which changes only in volume, but not in shape. [1] Pure hydrostatic stress can be experienced by a point in a fluid such as water. It is often used interchangeably with "mechanical pressure" and is also known as confining stress, particularly in the field of ...
After performing a stress analysis on a material body assumed as a continuum, the components of the Cauchy stress tensor at a particular material point are known with respect to a coordinate system. The Mohr circle is then used to determine graphically the stress components acting on a rotated coordinate system, i.e., acting on a differently ...
Probability density of stress S (red, top) and resistance R (blue, top), and of equality (m = R - S = 0, black, bottom). Distribution of stress S and strength R: all the (R, S) situations have a probability density (grey level surface). The area where the margin m = R - S is positive is the set of situation where the system is reliable (R > S).
The calculation of the stresses (stress analysis) that develop within such systems is based on the theory of elasticity and infinitesimal strain theory. When the applied loads cause permanent deformation, one must use more complicated constitutive equations, that can account for the physical processes involved ( plastic flow , fracture , phase ...