Search results
Results from the WOW.Com Content Network
A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1] [2] It is created by a celestial body with an active interior dynamo.
The magnetopause, the area where the pressures balance, is the boundary of the magnetosphere. Despite its name, the magnetosphere is asymmetric, with the sunward side being about 10 Earth radii out but with the other side stretching out in a magnetotail that extends beyond 200 Earth radii. [28]
The diagram is thoughtfully put together and I learned something from it, not finding myself distracted by crops or labels or pixelation. Plus I'm a sucker for diagrams.--Efbrazil 05:04, 23 May 2013 (UTC) Support I agree that it would make the earth too small if the elements were not cut off the way they are.
The Rare Earth hypothesis argues that planets with complex life, like Earth, are exceptionally rare.. In planetary astronomy and astrobiology, the Rare Earth hypothesis argues that the origin of life and the evolution of biological complexity, such as sexually reproducing, multicellular organisms on Earth, and subsequently human intelligence, required an improbable combination of astrophysical ...
The following is a chronology of discoveries concerning the magnetosphere. 1600 - William Gilbert in London suggests the Earth is a giant magnet. 1741 - Hiorter and Anders Celsius note that the polar aurora is accompanied by a disturbance of the magnetic needle. 1820 - Hans Christian Ørsted discovers electric currents create magnetic effects.
Although Mercury's magnetic field is much weaker than Earth's magnetic field, it is still strong enough to deflect the solar wind, inducing a magnetosphere. Because Mercury's magnetic field is weak while the interplanetary magnetic field it interacts with in its orbit is relatively strong, the solar wind dynamic pressure at Mercury's orbit is ...
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.