Search results
Results from the WOW.Com Content Network
The reciprocal function f(x) = x −1 where for every x except 0, f(x) represents its multiplicative inverse. Exponentiation of a nonāzero real number can be extended to negative integers, where raising a number to the power −1 has the same effect as taking its multiplicative inverse:
Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1).
Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...
The resultant sign from multiplication when both are positive or one is positive and the other is negative can be illustrated so long as one uses the positive factor to give the cardinal value to the implied repeated addition or subtraction operation, or in other words, -5 x 2 = -5 + -5 = -10, or 10 ÷ -2 = 10 - 2 - 2 - 2 - 2 - 2 = 0 (the ...
A multiplication by a negative number can be seen as a change of direction of the vector of magnitude equal to the absolute value of the product of the factors. When multiplying numbers, the magnitude of the product is always just the product of the two magnitudes. The sign of the product is determined by the following rules:
2. Denotes that a number is positive and is read as plus. Redundant, but sometimes used for emphasizing that a number is positive, specially when other numbers in the context are or may be negative; for example, +2. 3. Sometimes used instead of for a disjoint union of sets. − 1.
Multiplication by negative numbers is omitted for clarity. Because the product of any two basis vectors is plus or minus another basis vector, the set {±1, ±i, ±j, ±k} forms a group under multiplication. This non-abelian group is called the quaternion group and is denoted Q 8. [26]
An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.