Search results
Results from the WOW.Com Content Network
For example, modules need not have bases, as the Z-module (that is, abelian group) Z/2Z shows; those modules that do (including all vector spaces) are known as free modules. Nevertheless, a vector space can be compactly defined as a module over a ring which is a field, with the elements being called vectors. Some authors use the term vector ...
For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b] If V is a vector space over F it may also be regarded as vector space over K. The dimensions are ...
In mathematics and statistics, a probability vector or stochastic vector is a vector with non-negative entries that add up to one.. The positions (indices) of a probability vector represent the possible outcomes of a discrete random variable, and the vector gives us the probability mass function of that random variable, which is the standard way of characterizing a discrete probability ...
There is a direct correspondence between n-by-n square matrices and linear transformations from an n-dimensional vector space into itself, given any basis of the vector space. Hence, in a finite-dimensional vector space, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices , or the language of linear ...
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
Other examples of infinite-dimensional normed vector spaces can be found in the Banach space article. Generally, these norms do not give the same topologies. For example, an infinite-dimensional ℓ p {\displaystyle \ell ^{p}} space gives a strictly finer topology than an infinite-dimensional ℓ q {\displaystyle \ell ^{q}} space when p < q ...
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .
Representation theory also depends heavily on the type of vector space on which the group acts. One distinguishes between finite-dimensional representations and infinite-dimensional ones. In the infinite-dimensional case, additional structures are important (e.g. whether or not the space is a Hilbert space, Banach space, etc.).