Search results
Results from the WOW.Com Content Network
The same team demonstrated in 2017 the first creation of a Bose–Einstein condensate in space [70] and it is also the subject of two upcoming experiments on the International Space Station. [71] [72] Researchers in the new field of atomtronics use the properties of Bose–Einstein condensates in the emerging quantum technology of matter-wave ...
Bose's "error" leads to what is now called Bose–Einstein statistics. Bose and Einstein extended the idea to atoms and this led to the prediction of the existence of phenomena which became known as Bose–Einstein condensate, a dense collection of bosons (which are particles with integer spin, named after Bose), which was demonstrated to exist ...
Similarly the Bose–Einstein correlations between two neutral pions are somewhat stronger than those between two identically charged ones: in other words two neutral pions are “more identical” than two negative (positive) pions. The surprising nature of these special Bose–Einstein correlations effects made headlines in the literature. [5]
As a result, at very low energies (or temperatures), a great majority of the bosons in a Bose gas can be crowded into the lowest energy state, creating a Bose–Einstein condensate. Bose and Einstein have established that the statistical properties of a Bose gas are governed by the Bose–Einstein statistics. In Bose–Einstein statistics, any ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed.
Using a witness for Bell correlations derived from a multi-partite Bell inequality, physicists at the University of Basel were able to conclude for the first time Bell correlation in a many-body system composed by about 480 atoms in a Bose–Einstein condensate. Even though loopholes were not closed, this experiment shows the possibility of ...
Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum (non-removable background) is considered as a superfluid or as a Bose–Einstein condensate (BEC).