Search results
Results from the WOW.Com Content Network
Pure water has a pH of 7 at 25°C, meaning it is neutral. When an acid is dissolved in water, the pH will be less than 7, while a base, or alkali, will have a pH greater than 7. A strong acid, such as hydrochloric acid, at concentration 1 mol dm −3 has a pH of 0, while a strong alkali like sodium hydroxide, at the same concentration, has a pH ...
Animation of a strong acid–strong base neutralization titration (using phenolphthalein).The equivalence point is marked in red. In chemistry, neutralization or neutralisation (see spelling differences) is a chemical reaction in which acid and a base react with an equivalent quantity of each other.
For example, if the concentration of the conjugate base is 10 times greater than the concentration of the acid, their ratio is 10:1, and consequently the pH is pK a + 1 or pK b + 1. Conversely, if a 10-fold excess of the acid occurs with respect to the base, the ratio is 1:10 and the pH is p K a − 1 or p K b − 1.
The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). [1] However, pI is also used. [2] For brevity, this article uses pI.
The pH after the equivalence point depends on the concentration of the conjugate base of the weak acid and the strong base of the titrant. However, the base of the titrant is stronger than the conjugate base of the acid. Therefore, the pH in this region is controlled by the strong base. As such the pH can be found using the following: [1]
Another example of a leuco dye is the crystal violet lactone, which in its lactone form is colorless or slightly yellowish, but in low pH, when it is protonated, it becomes intensely violet. [1] Other examples are phenolphthalein and thymolphthalein , colorless in acidic to neutral pH, but becoming pink and blue in alkaline environment.
A buffer solution is a solution where the pH does not change significantly on dilution or if an acid or base is added at constant temperature. [1] Its pH changes very little when a small amount of strong acid or base is added to it. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical ...
The Henderson-Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [12] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [13]