Search results
Results from the WOW.Com Content Network
The term sublimation refers specifically to a physical change of state and is not used to describe the transformation of a solid to a gas in a chemical reaction. For example, the dissociation on heating of solid ammonium chloride into hydrogen chloride and ammonia is not sublimation but a chemical reaction.
In thermodynamics, the enthalpy of sublimation, or heat of sublimation, is the heat required to sublimate (change from solid to gas) one mole of a substance at a given combination of temperature and pressure, usually standard temperature and pressure (STP). It is equal to the cohesive energy of the solid.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
A typical phase diagram.The solid green line applies to most substances; the dashed green line gives the anomalous behavior of water. In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium. [1]
This unstable allotrope, being molecular, is the most volatile, least dense, and most toxic. Solid yellow arsenic is produced by rapid cooling of arsenic vapor, As 4. It is rapidly transformed into grey arsenic by light. The yellow form has a density of 1.97 g/cm 3. [21] Black arsenic is similar in structure to black phosphorus. [21]
This is an accepted version of this page This is the latest accepted revision, reviewed on 30 November 2024. This article is about the chemical element. For other uses, see Iodine (disambiguation). Chemical element with atomic number 53 (I) Iodine, 53 I Iodine Pronunciation / ˈ aɪ ə d aɪ n, - d ɪ n, - d iː n / (EYE -ə-dyne, -din, -deen) Appearance lustrous metallic gray solid ...
Monatomic chlorine Gas Cl 121.7 Chloride ion Aqueous Cl −: −167.2 Chlorine: Gas Cl 2: 0 Chromium: Solid Cr 0 Copper: Solid Cu 0 Copper(II) bromide: Solid CuBr2 −138.490 Copper(II) chloride: Solid CuCl2 −217.986 Copper(II) oxide: Solid CuO −155.2 Copper(II) sulfate: Aqueous CuSO 4: −769.98 Fluorine: Gas F 2: 0 Monatomic hydrogen Gas ...
Volatility can also describe the tendency of a vapor to condense into a liquid or solid; less volatile substances will more readily condense from a vapor than highly volatile ones. [1] Differences in volatility can be observed by comparing how fast substances within a group evaporate (or sublimate in the case of solids) when exposed to the ...