enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary.

  3. Nucleic acid sequence - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_sequence

    Nucleic acids consist of a chain of linked units called nucleotides. Each nucleotide consists of three subunits: a phosphate group and a sugar (ribose in the case of RNA, deoxyribose in DNA) make up the backbone of the nucleic acid strand, and attached to the sugar is one of a set of nucleobases.

  4. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    At the time, "yeast nucleic acid" (RNA) was thought to occur only in plants, while "thymus nucleic acid" (DNA) only in animals. The latter was thought to be a tetramer, with the function of buffering cellular pH. [199] [200] In 1937, William Astbury produced the first X-ray diffraction patterns that showed that DNA had a regular structure. [201]

  5. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.

  6. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    Nucleic acids RNA (left) and DNA (right). Nucleic acids are large biomolecules that are crucial in all cells and viruses. [1] They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid ...

  7. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/.../Nucleic_acid_tertiary_structure

    Two important functions are the binding potential with ligands or proteins, and its ability to stabilize the whole tertiary structure of DNA or RNA. The strong structure can inhibit or modulate transcription and replication, such as in the telomeres of chromosomes and the UTR of mRNA. [18] The base identity is important towards ligand binding.

  8. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    It is not always the case that the structure of a molecule is easy to relate to its function. What makes the structure of DNA so obviously related to its function was described modestly at the end of the article: "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material".

  9. Ribonucleotide - Wikipedia

    en.wikipedia.org/wiki/Ribonucleotide

    Both types of pentoses in DNA and RNA are in their β-furanose (closed five-membered ring) form and they define the identity of a nucleic acid. DNA is defined by containing 2'-deoxy-ribose nucleic acid while RNA is defined by containing ribose nucleic acid. [1] In some occasions, DNA and RNA may contain some minor bases.