Search results
Results from the WOW.Com Content Network
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
In mathematics, the lowest common denominator or least common denominator (abbreviated LCD) is the lowest common multiple of the denominators of a set of fractions. It simplifies adding, subtracting, and comparing fractions.
For example, 1 is the infimum of the positive integers as a subset of integers. For another example, consider again the relation | on natural numbers. The least upper bound of two numbers is the smallest number that is divided by both of them, i.e. the least common multiple of the numbers.
Least common multiple, a function of two integers; Living Computer Museum; Life cycle management, management of software applications in virtual machines or in containers; Logical Computing Machine, another name for a Turing machine
To find the primitive Pythagorean triple associated with any such value t, compute (1 − t 2, 2t, 1 + t 2) and multiply all three values by the least common multiple of their denominators. (Alternatively, write t = n / m as a fraction in lowest terms and use the formulas from the previous section.)
An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.
One of the basic principles of algebra is that one can multiply both sides of an equation by the same expression without changing the equation's solutions. However, strictly speaking, this is not true, in that multiplication by certain expressions may introduce new solutions that were not present before. For example, consider the following ...
The arithmetic billiard for the numbers 15 and 40: the greatest common divisor is 5, the least common multiple is 120. In recreational mathematics, arithmetic billiards provide a geometrical method to determine the least common multiple (LCM) and the greatest common divisor (GCD) of two natural numbers. It makes use of reflections inside a ...