enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M ; and the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f ) and the nullity of f (the dimension of the kernel of f ).

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    It follows that Ax 1, Ax 2, …, Ax r are linearly independent. Now, each A x i is obviously a vector in the column space of A . So, A x 1 , A x 2 , …, A x r is a set of r linearly independent vectors in the column space of A and, hence, the dimension of the column space of A (i.e., the column rank of A ) must be at least as big as r .

  4. Nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Nullity_theorem

    More generally, if a submatrix is formed from the rows with indices {i 1, i 2, …, i m} and the columns with indices {j 1, j 2, …, j n}, then the complementary submatrix is formed from the rows with indices {1, 2, …, N} \ {j 1, j 2, …, j n} and the columns with indices {1, 2, …, N} \ {i 1, i 2, …, i m}, where N is the size of the ...

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    Thus Ax = 0 if and only if x is orthogonal (perpendicular) to each of the row vectors of A. It follows that the null space of A is the orthogonal complement to the row space. For example, if the row space is a plane through the origin in three dimensions, then the null space will be the perpendicular line through the origin.

  6. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    For the cases where ⁠ ⁠ has full row or column rank, and the inverse of the correlation matrix (⁠ ⁠ for ⁠ ⁠ with full row rank or ⁠ ⁠ for full column rank) is already known, the pseudoinverse for matrices related to ⁠ ⁠ can be computed by applying the Sherman–Morrison–Woodbury formula to update the inverse of the ...

  7. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.

  8. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    The nullity theorem says that the nullity of A equals the nullity of the sub-block in the lower right of the inverse matrix, and that the nullity of B equals the nullity of the sub-block in the upper right of the inverse matrix. The inversion procedure that led to Equation performed matrix block operations that operated on C and D first.

  9. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Matrices can be used to compactly write and work with multiple linear equations, that is, systems of linear equations. For example, if A is an m×n matrix, x designates a column vector (that is, n×1-matrix) of n variables x 1, x 2, ..., x n, and b is an m×1-column vector, then the matrix equation =