Search results
Results from the WOW.Com Content Network
The Cheeger constant (also Cheeger number or isoperimetric number) of a graph is a numerical measure of whether or not a graph has a "bottleneck". The Cheeger constant as a measure of "bottleneckedness" is of great interest in many areas: for example, constructing well-connected networks of computers , card shuffling , and low-dimensional ...
Gas properties Std enthalpy change of formation, Δ f H o gas –103.18 kJ/mol Standard molar entropy, S o gas: 295.6 J/(mol K) at 25 °C Heat capacity, c p: 65.33 J/(mol K) at 25 °C van der Waals' constants [4] a = 1537 L 2 kPa/mol 2 b = 0.1022 liter per mole
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
Since = if and only if the graph is bipartite, we will refer to the graphs that satisfy this alternative definition but not the first definition bipartite Ramanujan graphs. If G {\displaystyle G} is a Ramanujan graph, then G × K 2 {\displaystyle G\times K_{2}} is a bipartite Ramanujan graph, so the existence of Ramanujan graphs is stronger.
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.
Exchange interaction is the main physical effect responsible for ferromagnetism, and has no classical analogue. For bosons, the exchange symmetry makes them bunch together, and the exchange interaction takes the form of an effective attraction that causes identical particles to be found closer together, as in Bose–Einstein condensation.
The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol R or R. It is the molar equivalent to the Boltzmann constant , expressed in units of energy per temperature increment per amount of substance , rather than energy per temperature increment per particle .
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...