enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Turn (angle) - Wikipedia

    en.wikipedia.org/wiki/Turn_(angle)

    The binary degree, also known as the binary radian (or brad), is ⁠ 1 / 256 ⁠ turn. [21] The binary degree is used in computing so that an angle can be represented to the maximum possible precision in a single byte. Other measures of angle used in computing may be based on dividing one whole turn into 2 n equal parts for other values of n. [22]

  3. Angular displacement - Wikipedia

    en.wikipedia.org/wiki/Angular_displacement

    The angular displacement (symbol θ, ϑ, or φ) – also called angle of rotation, rotational displacement, or rotary displacement – of a physical body is the angle (in units of radians, degrees, turns, etc.) through which the body rotates (revolves or spins) around a centre or axis of rotation.

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The trace of a rotation matrix is equal to the sum of its eigenvalues. For n = 2, a rotation by angle θ has trace 2 cos θ. For n = 3, a rotation around any axis by angle θ has trace 1 + 2 cos θ. For n = 4, and the trace is 2(cos θ + cos φ), which becomes 4 cos θ for an isoclinic rotation.

  5. Degree (angle) - Wikipedia

    en.wikipedia.org/wiki/Degree_(angle)

    A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. [4] It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI brochure as an accepted unit. [5]

  6. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  7. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  8. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Elevation is 90 degrees (= ⁠ π / 2 ⁠ radians) minus inclination. Thus, if the inclination is 60 degrees (= ⁠ π / 3 ⁠ radians), then the elevation is 30 degrees (= ⁠ π / 6 ⁠ radians). In linear algebra , the vector from the origin O to the point P is often called the position vector of P .

  9. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The number of Euler angles needed to represent the group SO(n) is n(n − 1)/2, equal to the number of planes containing two distinct coordinate axes in n-dimensional Euclidean space. In SO(4) a rotation matrix is defined by two unit quaternions, and therefore has six degrees of freedom, three from each quaternion.