enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid notation - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_notation

    The nucleic acid notation currently in use was first formalized by the International Union of Pure and Applied Chemistry (IUPAC) in 1970. [1] This universally accepted notation uses the Roman characters G, C, A, and T, to represent the four nucleotides commonly found in deoxyribonucleic acids (DNA). Given the rapidly expanding role for genetic ...

  3. DNA and RNA codon tables - Wikipedia

    en.wikipedia.org/wiki/DNA_and_RNA_codon_tables

    DNA and RNA codon tables. The standard RNA codon table organized in a wheel. A codon table can be used to translate a genetic code into a sequence of amino acids. [1][2] The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs ...

  4. Nucleotide - Wikipedia

    en.wikipedia.org/wiki/Nucleotide

    This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.

  5. Nucleic acid sequence - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_sequence

    The sequence of nucleobases on a nucleic acid strand is translated by cell machinery into a sequence of amino acids making up a protein strand. Each group of three bases, called a codon, corresponds to a single amino acid, and there is a specific genetic code by which each possible combination of three bases corresponds to a specific amino acid.

  6. Genetic code - Wikipedia

    en.wikipedia.org/wiki/Genetic_code

    The genetic code is the set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome , which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA ...

  7. International Union of Pure and Applied Chemistry - Wikipedia

    en.wikipedia.org/wiki/International_Union_of...

    These codes make it easier and shorter to write down the amino acid sequences that make up proteins. The nucleotide bases are made up of purines (adenine and guanine) and pyrimidines (cytosine and thymine or uracil). These nucleotide bases make up DNA and RNA. These nucleotide base codes make the genome of an organism much smaller and easier to ...

  8. Nucleotide universal IDentifier - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_universal...

    It is a unique, non- degenerate encoding scheme that can be used as a universal representation to identify an oligonucleotide across manufacturers. The design of nuID was inspired by the fact that the raw sequence of the oligonucleotide is the true definition of identity for a probe, the encoding algorithm uniquely and non-degenerately ...

  9. Non-canonical base pairing - Wikipedia

    en.wikipedia.org/wiki/Non-canonical_base_pairing

    IUPAC-IUB recommended nomenclature of nucleotide base atoms of adenine, guanine, uracil and cytosine bases (created in MOLDEN). Double helical structures of DNA as well as folded single stranded RNA are now known to be stabilized by Watson-Crick base pairing between the purines, adenine and guanine, with the pyrimidines, thymine (or uracil for ...