Search results
Results from the WOW.Com Content Network
Contingency is not impossible, so a contingent statement is therefore one which is true in at least one possible world. But contingency is also not necessary, so a contingent statement is false in at least one possible world. α While contingent statements are false in at least one possible world, possible statements are not also defined this ...
The method of truth tables illustrated above is provably correct – the truth table for a tautology will end in a column with only T, while the truth table for a sentence that is not a tautology will contain a row whose final column is F, and the valuation corresponding to that row is a valuation that does not satisfy the sentence being tested.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
Logical truth is one of the most fundamental concepts in logic. Broadly speaking, a logical truth is a statement which is true regardless of the truth or falsity of its constituent propositions . In other words, a logical truth is a statement which is not only true, but one which is true under all interpretations of its logical components ...
A truth table has one column for each input variable (for example, A and B), and one final column showing all of the possible results of the logical operation that the table represents (for example, A XOR B). Each row of the truth table contains one possible configuration of the input variables (for instance, A=true, B=false), and the result of ...
Atomic sentences are assigned truth values disquotationally. For example, the sentence "'Snow is white' is true" becomes materially equivalent with the sentence "snow is white", i.e. 'snow is white' is true if and only if snow is white. Said again, a sentence of the form "A" is true if and only if A is true. The truth of more complex sentences ...
What exactly al-Farabi posited on the question of future contingents is contentious. Nicholas Rescher argues that al-Farabi's position is that the truth value of future contingents is already distributed in an "indefinite way", whereas Fritz Zimmerman argues that al-Farabi endorsed Aristotle's solution that the truth value of future contingents has not been distributed yet. [3]