Search results
Results from the WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number , except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°).
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
Another group of trigonometric identities concerns the so-called addition/subtraction formulas (e.g. the double-angle identity = , the addition formula for (+)), which can be used to break down expressions of larger angles into those with smaller constituents.
The figure shows how the sign of the sine function varies as the angle changes quadrant. Because the x - and y -axes are perpendicular, this Pythagorean identity is equivalent to the Pythagorean theorem for triangles with hypotenuse of length 1 (which is in turn equivalent to the full Pythagorean theorem by applying a similar-triangles argument).
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
Because these are double angles, each of q, r, and s represents two applications of the rotation implied by an edge of the spherical triangle. From the definitions, it follows that srq = uw −1 wv −1 vu −1 = 1, which tells us that the composition of these rotations is the identity transformation. In particular, rq = s −1 gives us